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Body-Coupled-Driven Object-Oriented Natural Interactive
Interface

Jianlong Hong, Yukun Xiao, Yuqi Chen, Shengshun Duan, Shengxin Xiang, Xiao Wei,
Huiyun Zhang, Lei Liu, Jun Xia, Wei Lei, Qiongfeng Shi,* Chengkuo Lee,* and Jun Wu*

The metaverse progressively demands heightened sophistication
in human-multi-machine collaboration, accelerating development
of hybrid immersive 2D tactile and 3D spatial perception interfaces.
However, current interfaces struggle with the precision and adaptability
in complex human-multi-machine interaction scenarios. This paper presents a
transparent stretchable sensing interface synergizing 2D tactile and 3D spatial
perception through body-coupled electromagnetic coupling. Its bi-modal
coupling (resistive coupling and capacitive coupling) mechanism enables
micrometer-scale 2D tactile sensing alongside broad 3D spatial perception
(200 mm range). The contact mode achieves calligraphy-grade trajectory
reconstruction (200 µm precision) with force tactile sensing, while the
non-contact mode recognizes 38 gestures at 97.11% accuracy. The interface’s
mechanical transparency and elasticity permit seamless integration
on curved surfaces (e.g., gloves and clothes) without perceptual interference.
An object-oriented human-machine interaction (HMI) framework is developed
to enable single-interface control of multiple devices through electromagnetic
signature recognition, enhancing collaborative efficiency. This work can inspire
designs of smart interfaces in intelligent healthcare monitoring, industrial
robotics coordination, and cross-domain augmented reality applications.

1. Introduction

The rapid evolution of metaverse and artificial intelligence
(AI) has sparked a wave of technological innovation in
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human-machine interfaces,[1] particularly
in lightweight, multifunctional, and wear-
able systems. This transformation not only
reshapes how users connect with digital
environments[2] but also creates an urgent
demand for naturalized and intuitive inter-
action paradigms. Current HMI systems
face dual-dimensional upgrades: At the
functional architecture level, the traditional
one-to-one correspondence between the
control end and the controlled object linear
control model struggles to meet parallel
operation requirements in dynamic multi-
task scenarios; At the perceptual dimen-
sion level, the transition from 2D planar
interaction[3] to 3D spatial interaction[4]

necessitates hybrid interaction models
integrating spatial awareness with precise
tactile control.[5] This dual transformation
positions electronic skin (e-skin) technol-
ogy at the core of the next-generation
metaverse interaction revolution.
As a groundbreaking technology

mimicking biological skin perception
mechanisms,[6] e-skin achieves precise

capture of physical signals including pressure,[7,8] temperature,[9]

slide,[10] and texture[11] through multimodal sensing networks
(incorporating piezoresistive,[12] capacitive,[13] piezoelectric[14]

and triboelectric mechanisms[15]), demonstrating unique advan-
tages in medical monitoring,[16,17] robotic tactile sensing,[18,19]

and environmental perception.[20,21] Its core value lies in es-
tablishing an intuitive interaction system aligned with human
physiology.[22] By simulating natural skin perception mecha-
nisms, it significantly reduces the cognitive load in human-
computer interaction, forming the critical technical foundation
for realizing “digital twin” experiences in the metaverse. How-
ever, current e-skin technologies show notable limitations in
3D spatial perception: most devices only achieve 1D proximity
sensing,[23,24] failing to interpret complex gestures and spatial re-
lationships, thereby constraining interaction freedom.[25]

Research communities have made multidimensional break-
throughs to address these technical bottlenecks. Zhou et al. pro-
posed a 3 × 3 touchless sensor array based on triboelectricity
and electrostatic induction. From the output of the nine sen-
sors, the author used a multilayer perceptron (MLP) neural net-
work to recognize 16 different gestures and finally achieved
an average accuracy of 96.5%.[26] Similarly, Du et al. designed
a 20 × 20 triboelectric proximity sensor array, which is large
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Figure 1. Ambient EM energy powered object-oriented natural human-machine interaction. a) Schematic of the OOBI powered by various ambient EM
fields, such as power cable (50 Hz), motors (∼MHz), and other equipment (∼kHz). b) Comparison between traditional HMI and object-oriented HMI.
c) Characteristics of object-oriented HMI, including object selection, bimodal control, and its potential applications. d) Optical images of the soft, thin,
transparent, and stretchable interface. e) Resistivity andmaximum elongation of the interface with different ratios of materials composition. f) Equivalent
circuit model of interface, which has four electrodes at the corners. g) Voltage outputs of the four electrodes when the interface is touched. h) Equivalent
circuit model of body coupled EM signals transmission in a close loop.

and dense enough to map the detailed 2D shape of various 3D
objects.[27] However, exponential increases in sensor quantity
raise cost concerns. To solve the problem, Zhou et al. recently
proposed amormyroidea-inspired capacitive coupling e-skin that
could achieve 3D spatial positioning with only 5 electrodes.[25]

Notably, existing solutions have yet to balance tactile resolution
with spatial perception, particularly in precision scenarios like
surgical robotics[28] and industrial machinery control,[29] where
insufficient tactile feedback accuracy directly impacts system
practicality.

In this paper, we developed a transparent and stretchable
object-oriented body-coupled interface (OOBI) that integrates
micrometer-scale 2D tactile precision with 3D spatial percep-
tion, addressing the critical gap between precision manipulation
and immersive interaction in metaverse applications (Figure 1a).
The OOBI achieves sub-millimeter tactile fidelity (200 μm spa-
tial resolution) with dual-response for force and trajectory, en-
abling calligraphy-grade handwriting reconstruction. Addition-
ally, its non-contact sensing modality extends interaction into
3D through a 200 mm operational range, enabling precise 3D
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trajectory localization with an impressive 97.11% accuracy
in recognizing 38 non-contact gestures encompassing all
26 alphabet letters. The transparent and stretchable na-
ture of this sensing interface further enhances its versatil-
ity and adaptability, allowing it to conform to various sur-
faces and environments while maintaining high sensitivity and
accuracy.
To resolve the complexity of multi-object interaction, we de-

veloped an object-oriented human machine interaction (HMI)
framework that controls multiple objects using a single inter-
face, enabling efficient human-multi-machine collaboration and
transforming the landscape of HMI (Figure 1b). By detecting
unique electromagnetic (EM) signatures from proximate de-
vices (Figure 1c), the system intuitively selects interaction ob-
jects when they are in close proximity, mimicking the natural
tendency for face-to-face communication in human interactions.
Meanwhile, the architecture supports bimodal operation. Accord-
ing to the amplitude of voltage signals, users seamlessly transi-
tion (response time < 1 ms) between calligraphy-grade 2D per-
ception and immersive 3D navigation without interface switch-
ing. This breakthrough bridges the critical divide between phys-
ical dexterity and digital immersion, positioning the OOBI as a
potential technology for next-generation metaverse ecosystems
where human-machine interaction becomes as intuitive as natu-
ral touch.

2. Results and Discussion

2.1. Design and Working Principles of the Ambient EM Energy
Powered Sensing Interface

EM radiation, as a ubiquitous and wasted energy in our daily
life, has increasingly become a potential and convenient power
source for portable devices.[30,31] Yet its potency in 3D perception
and contactless interaction has not been explored. Here, a body-
coupled ambient EMpowered contactless sensing approach is in-
vestigated based on theOOBI (Figure 1a). Compared to air, which
exhibits a significantly lower relative permittivity (ɛ ≈ 1) and con-
ductivity (𝜎 ≈ 10−14 S m−1), the human body demonstrates sig-
nificantly high values for these properties (ɛ ≈ 78 and 𝜎 ≈ 0.6
S m−1, respectively), rendering it an excellent medium for cou-
pling EMenergy.[32] As shown in Figure 1a, the dissipated EMsig-
nals are effectively captured by the human body and then trans-
mitted to ground to form a close loop. When the human hands
approach or touch the OOBI, the power of the EM signals will
then partially go through the interface and then flow to ground
through the measurement circuit, which forms another close
loop.
To effectively capture the body-coupled EM signals, the OOBI

is prepared with a transparent conductive layer and an insu-
lation substrate. The conductive layer is polyvinyl chloride gel
(PVC-gel), which is prepared by mixing PVC and dibutyl adi-
pate (DBA) due to its excellent stretchability and proper resis-
tivity. The insulation substrate is made of styrene ethylene buty-
lene styrene (SEBS). Figure 1d exhibits the soft, thin, transpar-
ent, and stretchable characteristics of the interface. The trans-
mittance of the PVC-gel with SEBS is shown in Figure S1 (Sup-
porting Information), which achieves over 70% transmittance
across both visible and infrared spectra. Meanwhile, the resis-

tivity and the maximum elongation of the interface with differ-
ent ratios of materials composition are shown in Figure 1e. The
stress–strain curves of the PVC-gel with different PVC:DBA ra-
tios is also presented in Figure S2 (Supporting Information).
PVC gel with PVC:DBA ratios of 1:0.5, 1:1, 1:1.5, 1:2, 1:3,
and 1:4 exhibits Young’s moduli of 58, 10, 6.1, 1.5, 0.76, and
0.51 MPa, respectively. These results quantitatively confirm the
progressive mechanical softening induced by increasing DBA
concentration. However, with the increase of DBA, the elon-
gation at break first increased and then decreased. This trend
arises from DBA’s dual role as both plasticizer and structural
modifier. At moderate concentrations, DBA molecules interca-
late between rigid PVC chains, expanding intermolecular dis-
tances and weakening chain interactions.[33] The resultant en-
hancement in chain mobility effectively plasticizes the matrix,
increasing ductility. Therefore, the PVC-gel becomes softer with
more DBA. However, excessive DBA introduction induces over
small interaction forces, which will cause the gel more suscep-
tible to breakage. FT-IR analysis of pure PVC, DBA, and PVC-
gel composites confirmed the physical dispersion of DBA plas-
ticizer within PVC polymer chains, with no spectroscopic evi-
dence of specific intermolecular bonding (Figure S2, Support-
ing Information). To ensure both low modulus and high break-
ing elongation of the conductive layer, SEBS is adopted as the
substrate, which effectively improves the stretchability of PVC-
gel (Figure S3, Supporting Information). Moreover, due to the
high mobility of the PVC chains, the resistivity of the com-
posite is also improved. As shown in Figure 1e, the resistiv-
ity of the PVC-gel spans from 8.8 MΩ m (PVC:DBA = 1:0.5)
to 39 kΩ m (PVC:DBA = 1:4). Regarding the sensor’s stretch-
ability and electro-mechanical stability, comprehensive charac-
terization was performed, with key results presented in Figure
S4 (Supporting Information). To evaluate the stretchability, we
directly compared PVC gel with and without the SEBS sub-
strate. The data reveal that the PVC gel without SEBSmaintained
functionality only up to 200% strain, beyond which fracture oc-
curred at 300% strain, resulting in irreversible degradation of
its mechanical and electrical properties. In contrast, the SEBS-
incorporated sensor exhibited stable performance under 360%
strain for ≈5000 cycles. This robust behavior conclusively vali-
dates the sensor’s superior stretchability and electro-mechanical
stability. Figure S5 (Supporting Information) demonstrates that
the fabricated device maintains structural integrity at 433%
strain.
The electrodes of the OOBI are placed on the four corners

of the conductive layer as depicted in Figure 1f. This setting al-
lows spatial perception of the OOBI, which will be elucidated in
the following section. When the interface is touched, the four
electrodes acquire body-coupled EM signals with varying ampli-
tudes due to the resistance differences between the electrodes
and the touch point (Figure 1f,g). For better understanding, the
equivalent circuit model of the body-coupled EM signals trans-
mission is shown in Figure 1h. The OOBI can be recognized
as four parallel resistors according to Figure 1f. It is worth not-
ing that the coupling between the human and the OOBI is bi-
modal, depending on whether the interface is touched (resistive
coupling) or not (capacitive coupling). Consequently, the output
of the OOBI can vary dramatically depending on the coupling
modes.
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Figure 2. Spatial contactless sensing ability of the OOBI. a) Simplify the physical model of the contactless mode of the OOBI. b) Signal output of the
OOBI at different distances between the EM source and the interface. c) Simulation of the influence of the distance between finger and interface on
the electric field distribution. d) Signal amplitude comparison of the OOBI at different distances from the simulation and experiment results. e) Voltage
response of the sensor at different distances with varied source frequencies. f) Variation of voltage amplitude and ratio from the OOBI when the EM
source is placed on different positions at a 1 mm distance. g) Voltage amplitudes of four electrodes at different distances between finger and electrode 1.
h) Illustration of experiment settings. i–k) Distribution of (V1+V4)/(V1+V2+V3+V4) (i), (V1+V2)/(V1+V2+V3+V4) (j), and V1+V2+V3+V4 (k) at different
spatial positions. l A finger swipe through the OOBI. m–o) Reconstructed moving trajectory of the finger swiping through the OOBI at x (m), y (n), and
z (o) direction.

2.2. Mechanisms of Spatial Contactless Sensing Ability of the
OOBI

When the OOBI works on the capacitive coupling mode, it can
achieve contactless sensing. The contactless sensing process of
the OOBI is elucidated using a simplified physical model, and
its corresponding equivalent circuit is illustrated in Figure 2a.

The model can be divided into four parts: the human hand, the
surface of interface, the electrodes of interface, and the ground.
Here, VEM is the voltage of ambient EM sources; Ccouple repre-
sents the spatial coupling capacitance between human body and
the EM source; Vcouple denotes the body-coupled voltage output of
the hand; Cp is the parasitic capacitance between the hand and
the ground; Cd denotes the couple capacitance between the hand
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and the interface; R1 and R2 are the resistances between two elec-
trodes of interface and the surface of the interface closest to the
hand; Rex is the internal resistance of measurement circuit. Ac-
cording to this model, the distance d(t) between the hand and the
interface determines the value ofCd, which will directly influence
the voltage outputs of the electrodes.
The voltage output of the OOBI under different distances

between the hand and the interface is measured as shown
in Figure 2b. To further investigate the mechanism of con-
tactless sensing of the OOBI, COMSOL-based finite element
method simulations are performed (Figure 2c). As shown in
Figure 2c(i)–(iii), the position of hand strongly affects the distri-
bution of the electric field, and thereby changes the voltages of
the electrodes.
For ease of understanding, the OOBI with only a single elec-

trode is considered (Figure S6, Supporting Information). Accord-
ing to Note S2 (Supporting Information), the voltage of the elec-
trode can be described as:

||Vout
|| = |Vcouple| ⋅ Rex√(

Rex + Ri

)2 + d2

(𝜀𝜀0Sw)
2

(1)

Therefore, the relationship between d(t) and the voltage output
exhibits an inverse exponential pattern, which is demonstrated
on the simulation and experiment results (Figure 2d). The output
of the OOBI can be influenced by the interface’s resistance and
the source’s frequency. Thus, to further improve the performance
of the OOBI, several experiments are executed to investigate the
impacts of these parameters.
First of all, under a sinusoidal electric field with a peak value

of 20 V, the relationships between distance and voltage output of
the OOBI prepared with different PVC:DBA ratios are compared
in Figure S7 (Supporting Information). It can be observed that
the body-coupled voltage remains relatively high when the ratio
of PVC to DBA is within the range of 1:1 to 1:3. Therefore, con-
sidering both flexibility and performance comprehensively, the
ratio of PVC and DBA is set as 1:3 in the following experiment.
Figure 2e illustrates the relationship between distance and the

detected voltage signal under various frequencies of the source
signal. Here, the frequencies adopted 40 and 90 Hz to avoid the
interference of 50 Hz ambient noise from other equipment. The
results indicate that as the frequency increases, the attenuation
imparted by distance to the source signal gradually diminishes.
Consequently, the non-contact sensing distance of the OOBI also
increases with rising frequency. This observation is corroborated
by Equation (1), which suggests that as w increases, the influ-
ence imparted by d decreases, aligning with the experimental
outcomes. However, this trend fades away when frequencies ex-
ceed 50 kHz. This saturation is attributed to the fact that the volt-
age induced by human body coupling is also influenced by fre-
quency. As depicted in Figure 2a, the impedance arising from
parasitic and coupling capacitors decreases with increasing fre-
quency, which in turn reduces the voltage generated by human
body coupling. Meanwhile, the result reveals that OOBI’s elec-
trical output and distance remain significantly correlated in the
range of more than 200 mm when the source frequency exceeds
500Hz. This verifies the wide proximity sensing rangemore than
200 mm of the OOBI.

Apart from the proximity sensing ability, the OOBI can de-
tect the spatial position because of the multi-electrode design as
shown in Figure 2a. The difference between R1 and R2, which
are determined by the hand position, will influence the elec-
trodes’ voltage output. As illustrated in Figure 2f, the voltage
output from electrode 1 decreases as the distance of the hand
to the corresponding electrode increases. Meanwhile, the ratio
V1/(V1+V2) exhibits superior linearity, which means that the ra-
tio can be used as an excellent indicator of position. To achieve 3D
spatial positioning, four electrodes design is applied the OOBI
here. In Figure 2g, the variation of the voltage outputs of four
electrodes under different distance of source is drawn. Appar-
ently, there is a significant relationship between the outputs of
the four electrodes and the spatial position of the source. To ex-
plore the rule behind the phenomenon, the voltage output un-
der different spatial positions (5 × 5 × 5 points) is detected as
depicted in Figure 2h. Inspired by the linearity of the ratio in
Figure 2f, the distribution of the ratios of four voltages and their
sum are plotted (Figure 2i–k). It is worth noting that the ratio of
(V1+V4)/(V1+V2+V3+V4) is highly correlated with x and insen-
sitive to variations in y and z (Figure 2i). Similarly, the ratio of
(V1+V2)/(V1+V2+V3+V4) is highly correlated with y and insensi-
tive to variations in x and z (Figure 2j). Besides, the sum of four
voltages also exhibits the same characteristic (Figure 2k). These
indicate that these three different ratios can act as the indicators
of x, y, and z, respectively. To verify the performance of these in-
dicators, we use them to real-time track the trajectory of a finger
as illustrated in Figure 2l–o. The reconstructed trajectory demon-
strates the effectiveness of the indicators and presents the poten-
tial of spatial positioning ability of the OOBI. Compared with the
traditional sensing arrays that require a mass of electrodes, the
OOBI only needs 4 electrodes to achieve precise 3D positioning,
which significantly reduces the cost of system complexity. The
comparison between the OOBI and the existing state of the art
contactless perception e-skins is given in Table S1 (Supporting
Information).

2.3. Mechanisms of Tactile Sensing Ability of the OOBI

Except for contactless sensing ability, the OOBI can also perceive
precise tactile information, which is important for the precision
control field. Unlike the contactless mode, a resistive coupling
is formed between the finger and the interface when a human
touches the interface (Figure 3a). Therefore, the coupling volt-
age from the human body can transmit to interface with much
less attenuation, which is further visualized in the simulation
result (Figure 3b). This feature can be used as a sign to distin-
guish tactile and contactless sensing, which has been a challenge
in previous researches, due to the overlap of the output signals
in both modes, including capacitive and magnetic driven non-
contact sensor.[34]

The sum of voltage signal outputs of the four electrodes is pre-
sented in Figure 3c, according to which the difference between
contact and non-contact is significant, demonstrating the practi-
cability to use the voltage output to distinguish tactile and con-
tactless sensing modes. Meanwhile, the voltage amplitude of the
OOBI also exhibits its capability to detect the force. As shown
in Figure 3d, we systematically characterized the force-voltage
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Figure 3. Calligraphy-grade high-resolution 2D tactile sensing capability. a) Simplify physical model of the tactile mode of the OOBI. b) Simulation of the
influence of the touch of a finger on the interface. c) Sum of the voltage outputs of the four electrodes at different forces exerted on the interface, which
shows the significant difference between contact and non-contact. d) Force-voltage relationship under sources (50 Hz sinusoidal signal) with different
amplitudes (1, 5, 10, 20 V). e) Reconstructed positions of points with a gap of 200 μm using the isoline theory. f) Reconstructed letter “E” using the
isoline theory. g) Reconstructed Chinese character “Dong” using the isoline theory. h) Reconstructed writing stroke of Chinese characters “Heng” and
“Shu” with different variation of strength. i,j) Application of writing calligraphy-grade Chinese characters. k) Benchmark comparison highlighting the
proposed e-skin ratio of pixel to electrodes, self-powered ability, and sensing continuity compared to existing e-skins.[30,38–44]

relationship of OOBI using a spherical sponge probe (elastic
modulus ≈ human fingertip, diameter = 1.5 cm) with conduc-
tive aluminum electrodes. Measurements were conducted across
multiple pressure cycles (five times), with error bands now indi-
cating measurement variability. The characteristic response ex-
hibits a steep voltage rise during initial contact (0–0.5 N) and
then close to a saturation area. This behavior originates from con-
tact mechanics: The soft sponge probes undergo rapid defor-
mation at low pressures, maximizing sensitivity in the 0–0.5 N
range. And the probes will meet a saturation of contact area at
higher pressures, which explains the signal plateauing. Accord-
ing to Figure 3d, the output voltage of OOBI would vary under
different sources. Therefore, it is not feasible to distinguish tac-
tile and contactless sensing modes by setting a fixed threshold
value. In practical usage, during intentional finger interactions,
applied pressures consistently exceed 0.4 N (validated in Figure
S8, Supporting Information for click/slide/light touch/press ges-
tures). It is notable that the output signal amplitude surpasses
non-contact levels by >400% when the load is more than 0.4 N
(voltage of source ≥ 5 V). Therefore, in order to effectively distin-

guish between contact and non-contact and maintain sufficient
redundancy, the threshold of switching can be set to 1/3 of the
voltage value at the maximum force state (>4 N), which can en-
sure that the dual-mode switching can be effectively carried out
in practical applications without switching problems.
Other than the spatial positioning and force detection ability of

the OOBI, it is also able to preciselymonitor the 2D trajectory. Ex-
isting approaches[30,35,36] that utilize four electrodes for position-
ing adopt voltage ratios as approximations for the abscissa x and
the ordinate y. However, this method is an approximation of the
positioning point, which incurs significant errors in regions close
to the four electrodes, thereby resulting in notable character dis-
tortions. To achieve high-precision handwriting reconstruction
and avoid character distortions arising from approximation es-
timates, we propose a four-electrode handwriting reconstruction
algorithm based on the isolinemethod, which is proposed by Sun
et al.[37]

First, we employed a customized three-axis control platform
to make contacts at equally spaced locations across the inter-
face and collected the voltage amplitudes corresponding to four
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electrodes. As illustrated in Figure S9 (Supporting Information),
we gathered voltage amplitudes for an 11 × 11 grid of equally
spaced points. Subsequently, we calculated two ratios, R1 =
(V1+V2)/(V1+V2+V3+V4), andR2= (V1+V4)/(V1+V2+V3+V4), for
these points (Figure S10, Supporting Information). The rationale
behind selecting these two ratios as key parameters stems from
their inherent relationship with the x and y coordinates of the
contact points, which aligns with the reasons cited in previous
studies that utilized these ratios.[30,35,36] In contrast to previous
approaches that directly employed these ratios as coordinates,
we computed the isoline distributions of these ratios across the
entire interface, as depicted in Figure S11 (Supporting Informa-
tion). This process yielded isoline distribution matrices for the
interface. When a contact is made at an unknown point, the cor-
responding two ratios can be computed. By referencing these ra-
tios in the previously obtained isoline matrices, we can locate the
two isolines corresponding to these ratios and determine their in-
tersection point, thereby obtaining the coordinates of the contact
point (Figure S12, Supporting Information). Thewhole process is
illustrated in Figure S13 (Supporting Information). This method
effectively mitigates the distortion issues encountered in previ-
ous work and achieves a higher level of positioning accuracy. In
Figure 3e, we used the three-axis control platform to touch the
OOBI with a gap of 200 μm. Derived from the four-voltage out-
put from the electrodes of the OOBI, the touch point can effec-
tively reconstruct these touch points, which reveals that theOOBI
can achieve a high resolution of less than 200 μm. To address the
quantitative evaluation of trajectory accuracy, root mean square
error (RMSE) between reconstructed and ground-truth positions
was analyzed, with results presented in Figure S14 (Supporting
Information).
Based on the high-resolution tactile sensing capability, the

OOBI can be used as a high-precision writing interface. Here, the
letter “E” and corresponding Chinese character “Dong” are writ-
ing based on the OOBI, as shown in Figure 3f,g. Meanwhile, on
the basis of its force sensing ability, the OOBI is able to capture
the strength variation during the writing process, which is cru-
cial for Chinese calligraphy. Specifically, in Chinese calligraphy,
strength has a great impact on the aesthetics of the overall text. As
depicted in Figure 3h, for the writing stroke, “Heng” and “Shu”,
the reconstructed results can effectively present the variation of
strength of writing strokes by the thickness. Meanwhile, the de-
tails of the trajectory are also well presented as denoted by the red
arrows. In Figure 3i,j, the application of writing Chinese charac-
ters is demonstrated. To better highlight the unique benefits of
trajectory tracking and force sensing, a video showcasing real-
time Chinese handwriting is shown in Movie S1 (Supporting
Information). This application vividly illustrates the precise cap-
ture of writing stroke and synchronized pressure-level detection.
These results reveal the calligraphy-grade tactile sensing ability
and its potential for high precision application. Critically, this bi-
modal sensing capability extends beyond artistic applications—
it enables tamper-resistant electronic signatures by binding bio-
metric pressure profiles to trajectory patterns, a feature unattain-
able with cameras or touchscreens. Figure 3k compares the ratio
of pixel to electrodes, self-powered ability, and sensing continuity
among the OOBI and other outstanding e-skins, demonstrating
its superior spatiotemporal resolution with fewer electrodes, low
power consumption, and great continuity.

2.4. OOBI Enabled Complex 3D Gesture Recognition

Traditional human-computer interaction methods, such as key-
boards,mice, or touchscreens, although satisfying people’s needs
to a certain extent, appear to be insufficiently natural and intu-
itive in some scenarios. Especially in immersive environments
like VR and AR, users prefer to interact with the virtual and real
environment through natural gesture movements. Herein, lever-
aging the intelligent processing capabilities of AI and the spatial
perception abilities of the wearable OOBI devices, we come up
with a new solution for immersive 3D gesture recognition appli-
cations.
Figure 4a illustrates the wearable application setup for the

OOBI. To realize the wearable application while avoiding direct
interference from signals emanating from the bottom of the de-
vice, we have implemented a grounding protection design. In
this setup, the wearable interface is placed on clothing, with a
flexible aluminum electrode connected to the ground placed un-
derneath the clothing. An additional layer of insulating cloth-
ing is placed beneath the aluminum electrode to create isola-
tion from the human skin. Regarding circuit connections, the
ground used for shielding interference is connected to the cir-
cuit ground. The four electrodes of the OOBI are connected to
a multi-channel ADC acquisition circuit based on the ADC7606
chip. Subsequently, several characteristic parameters are calcu-
lated using a coordinate algorithm and then input into a CNN-
based machine learning model.
We chose 12 common gestures along with the frequently used

26-letter air-writing gestures to demonstrate the accurate recog-
nition capabilities of the OOBI across multiple gestures. Beyond
these gestures, the system can be extended to recognize other
gestures as well. Specifically, the signals of a subset of these ges-
tures, when calculated as coordinates in the manner depicted in
Figure 2i–k, yield results as shown in Figure 4b. By observing the
coordinate variation curves of several gestures, it is evident that
the patterns of these curves can effectively distinguish between
different motion characteristics. Compared to curves, convolu-
tional neural networks (CNNs) excel at extracting features from
images, enabling accurate identification formulti-class classifica-
tion problems. Figure 4c illustrates the process of transforming
the output of coordinate variation curves into multiple images
containing time and frequency features information, which are
then fed into a neural network model with a residual network
(ResNet) structure, thereby achieving the entire workflow from
curve analysis to image-based gesture recognition. Specifically,
when converting the input signal into an image, we utilize the
continuous wavelet transform (CWT) to fully preserve the time-
frequency characteristics of the signal. On the other hand, due
to the insensitivity of the CWT to the positive-negative symmetry
of time-frequency signals, which is crucial information for spatial
gesture signals, we also convert the positive-negative information
of the signal into an image, as depicted in Figure 4c. This image,
combined with the output of the CWT, forms the composite im-
age input, which is then fed into the network (some samples are
displayed in Figure S15, Supporting Information).
For the training dataset, gesture data were collected from 3 dis-

tinct volunteers to incorporate biological variability. Meanwhile,
every gesture was performed more than 20 times to ensure a
large enough dataset. Participants performed each gesture at
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Figure 4. Non-contact spatial complex gesture recognition based on the OOBI. a) Wearable application setup for the OOBI. b) Samples of the calculated
coordinate’s variation from different spatial gestures. c) Workflow of transforming the signals into images and the structure of the proposed neural
network, Co: Convolution layer, BN: Batchnorm layer, Re: ReLu layer, Max: Maxpool layer, Avr: Averagepool layer, FC: Fullconnect layer, Prob: Softmax
layer. d) The t-SNE results of the trained network. e) A simplified confusion matrix with an average accuracy of 97.11%.

self-selected speeds to ensure the variability of gestures (no
temporal constraints imposed). During the neural network
training, the collected dataset is split with ≈80% for train-
ing and 20% for testing. We employ the t-distributed stochas-
tic neighbor embedding (t-SNE) method to visualize the data

derived from CNN outputs (Figure 4d). The result reveals
the network’s capability to distinguish between different ac-
tion features. Figure 4e shows the proposed neural network’s
high recognition precision (97.11 %) among 38 different
gestures.

Adv. Mater. 2025, e07067 © 2025 Wiley-VCH GmbHe07067 (8 of 13)
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Meanwhile, the reliability of the system in practical applica-
tion is important.[45] To validate the wearable system’s stabil-
ity under dynamic conditions, we have implemented several ex-
periments to characterize the output performance of the sen-
sor under three states: normal state, bending state (bending ra-
dius: 4 cm), and stretching state (strain: 10%). According to
the principle of bimodal interaction, the key parameters that
decide the results are: R1 = (V1+V2)/(V1+V2+V3+V4), R2 =
(V1+V4)/(V1+V2+V3+V4), and sum of voltage = V1+V2+V3+V4.
As shown in Figure S16 (Supporting Information), the data re-
veal that bending and stretching alter parameter values, but rela-
tive trends among these parameters remain consistent. This may
introduce positional offsets while preserving similar recognition
patterns. Similarly, for non-contact gestures under these three
states, key parameters R1, R2 , and sum of voltages exhibit com-
parable behavior. As shown in Figure S17 (Supporting Informa-
tion), although curve shapes vary across states, their variation pat-
terns maintain similarity, enabling effective gesture recognition
when trend consistency is ensured. Regarding motion artifacts,
contact-mode tests (Figure S18, Supporting Information) demon-
strate that slight hand movements during wear increase fluctua-
tions in these three parameters. While this introduces detection
errors, such deviations remain tolerable under mild motion con-
ditions.

2.5. Frequency-Dependent Object-Oriented Natural
Human-Machine Interface

Traditional HMImethods, as illustrated in Figure 5a, employ dis-
tinct control interfaces tailored to different control objects. This
approach increases the learning cost for users when operating
various machines and diminishes the convenience of operation.
In response to this issue, we propose an object-oriented natural
HMI method that relies on EM wave frequencies.
In practical applications, EM interference generated by equip-

ment exhibits distinct frequency signatures across device cate-
gories. For instance, wireless communication devices like Wi-Fi
routers and Bluetooth transceivers operate at 2.4 GHz for data
transmission, while RFID systems employ lower frequencies of
125 kHz or 13.56 MHz for inventory tracking and contactless
transactions. Power cables generate 50/60 Hz electromagnetic
fields from AC current flow, whereas electric motors produce
high-frequency PWMnoise spanning≈10 kHz to 10MHzduring
operation. Figure S19 (Supporting Information) displays the am-
plitude of acquired signals under different environments, equip-
ment, and distances. The data indicate that environmental de-
vices generate substantial signal amplitudes. When maintain-
ing sufficiently close proximity, these can provide adequate sig-
nal energy for the interface. These measurable electromagnetic
signatures, spanning distinct frequency bands, serve as unique
identifiers for device classification and differentiation in electro-
magnetic spectrum analysis. However, these signal amplitudes
also introduce interference, reducing recognition accuracy. To
address this, as stated in Section 2.4, we implement grounded
shielding on the interface and circuits for noise immunity. As
demonstrated in Figure S19 (Supporting Information), electro-
magnetic signals with proper shielding (blue) are suppressed to
levels far below unshielded conditions, making interference sig-

nificantly smaller than detectable amplitudes. Simultaneously,
during practical use, these electromagnetic signals can still prop-
agate to the interface surface through body coupling, maintain-
ing high amplitudes. Thus, the interface achieves high-precision
bimodal sensing (Figure S20, Supporting Information).
Here, for convenient demonstration, apart from utilizing the

50/60 Hz electromagnetic wave signal emitted by a computer,
we also employed a signal generator to produce two sine wave
signals, each with a peak-to-peak voltage of 20 V but differing
in frequency at 1 and 2 kHz, respectively. These signals were
connected to two aluminum foil electrodes, each with an area of
3 × 3 cm2, and placed in proximity to a robot dog and a robotic
arm, serving as the electromagnetic wave sources corresponding
to these devices, as illustrated in Figure 5b. Based on this foun-
dation, leveraging the sensitivity of the OOBI to electromagnetic
signals enables the perception of distance between the OOBI in-
terface and various sources of frequency band signals. When a
specific object is detected to be sufficiently close, it is selected for
subsequent control operations. This method of selecting objects
exhibits exceptional efficiency and intuitive characteristics.
To visually demonstrate the spatial distribution of electromag-

netic waves with different frequencies, we utilized COMSOL to
simulate this scenario, as illustrated in Figure S21 (Supporting
Information) and the accompanying Table S2 (Supporting In-
formation). Figure 5c and Figure S22 (Supporting Information)
present the spatial distribution of signal’s maximum amplitude
from three sources with different frequencies. It is evident from
the Figures that as the distance from the signal source increases,
the corresponding signal amplitude decreases. In practical appli-
cations, object selection operations are only executed when the
signal amplitude of a specific frequency exceeds a certain thresh-
old to enhance control accuracy, as indicated by the lined areas in
Figure 5c. Figure 5d–f displays the voltage signal outputs mea-
sured near different signal sources, each representing a distinct
control object. Figures S23 (Supporting Information) show the
corresponding short-time Fourier transform (STFT) results, re-
vealing a significant increase in the amplitude of the correspond-
ing frequency components in the signals as they approach dif-
ferent signal sources. For better interpretation, a movie is pro-
vided to visualize the entire frequency-based object selection pro-
cess (Movie S2, Supporting Information). Based on this intu-
itive multi-object switching mechanism that simulates face-to-
face human communication, we can achieve efficient human-
multi-machine collaboration, realizing highly effective and natu-
ral human-machine interaction (HMI). Actually, the resolution of
the EM signature can achieve less than 15Hz, as demonstrated in
Note S3 and Figure S24 (Supporting Information), which means
that the number of objects that can be controlled is not limited
by the frequency resolution.
Subsequently, we demonstrate seamless bimodal interaction

through a coordinated object transfer task between a robot dog
and a robotic arm. The experimental workflow involves: 1) pre-
cision placement of an object (sphere) from a robotic arm to a
quadruped robot dog’s end-effector, followed by 2) autonomous
delivery of the object by the quadruped platform to a desig-
nated operator. As detailed in Section 2.3, the OOBI achieves
dynamic mode switching through threshold-based signal ampli-
tude detection, enabling contact-driven manipulation and non-
contact spatial guidance. Critical to this functionality is the
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Figure 5. Frequency-dependent object-oriented natural HMI application. a) Traditional HMI methods using different control interfaces to control differ-
ent objects, and each interface uses a complex button design to achieve multiple control instructions. b) Experiment settings for following frequency-
dependent object-oriented natural HMI where the computer, robot dog, and robotic arm are respectively three different controlled objects. c) Simulation
results reveal the spatial distribution of maximum amplitudes of the EM signals from three sources with different frequencies. d–f) Voltage signals
output from the OOBI when approaching the (d) computer, (e) robot dog, and (f) robotic arm, where the insets show the signal details. g) Workflow
of control multi-object using the OOBI. h) Spatial interaction using the OOBI for coarse operation. i) Tactile interaction using the OOBI for precise
operation.
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ultralow 0.6 ms response latency for mode transitions, and less
than 10 ms response latency for sensor delay under 1 kHz elec-
tromagnetic excitation (Figures S25 and S26, Supporting Infor-
mation), approaching the temporal requirements (<2 ms) for
human-imperceptible interaction discontinuity. This ultrafast re-
sponse speed satisfies the need for seamless switching of inter-
action modes. The CNN inference time is also counted as shown
in Figure S27 (Supporting Information), which shows that CNN
inference time remains below 20 ms.
As illustrated in Figure 5g and Figure S28 (Supporting Infor-

mation), to control the robotic dog, the volunteer approaches the
dog’s signal source, enabling the OOBI to perceive the corre-
sponding characteristic frequency signal and select the robot dog.
Next, the 38 spatial manipulation gestures trained in the previ-
ous section are employed to control the dog’s actions, such as
standing up or turning right (Figure 5h). Subsequently, control is
switched to the robotic arm by approaching it. To ensure the ball
is accurately transferred from the robotic arm to the dog’s back,
the precise 2D tactile interaction method is used to control the
robotic arm’s spatial position, positioning the ball exactly where
the dog is located and using spatial gestures to release the ball
onto the dog’s back (Figure 5i). Finally, the controlled object is
switched back to the dog, instructing it to walk toward the volun-
teer. For easier understanding, the entire process is also demon-
strated in Movie S3 (Supporting Information).
The above demonstration fully showcases the convenience

brought by frequency-based object-oriented human-machine in-
teraction in multi-object control scenarios. Compared to the tra-
ditional way shown in Figure 5a, which utilizes multiple distinct
control interfaces and correspondingly complex and diverse com-
mands, the OOBI proposed in this study allows for flexible co-
ordinated control of multiple objects through a single, univer-
sal set of 2D tactile and 3D spatial perception gestures, signif-
icantly enhancing the interaction convenience and ease of ma-
nipulation in complex control scenarios. This innovates natu-
ral human-machine collaboration in complex environments and
demonstrates the potential of object-oriented HMI in complex
control contexts.

3. Conclusion

In this study, we present a transparent and stretchable HMI in-
terface that successfully bridges the critical gap between high-
precision manipulation and immersive interaction in metaverse
systems. Based on body-coupled EM mechanism, we investi-
gate the bimodal coupling (resistive coupling and capacitive cou-
pling) between human and OOBI, and develop tactile sensing
and spatial contactless sensingmechanisms. The OOBI’s 2D tac-
tile capability achieves dual-mode response for both force detec-
tion (34.18 N−1) and trajectory reconstruction (200 μm spatial fi-
delity), enabling calligraphy-grade handwriting recognition. Re-
markably, the system extends interaction dimensionality through
a 200mmoperational range in non-contactmode, demonstrating
exceptional 97.11% recognition accuracy across 38 gesture pat-
terns encompassing the complete English alphabet. To address
multi-object interaction challenges in complex environments, we
develop an object-oriented HMI framework that enables single-
interface control ofmultiple devices through EM signature recog-
nition. This biologically inspired system mimics human social

interaction patterns by automatically selecting proximate objects
through their unique EM fingerprints, effectively eliminating
manual switching between targets. The bimodal architecture fur-
ther enhances operational efficiency by enabling seamless tran-
sitions (response time < 1 ms) between precision 2D manipula-
tion and immersive 3D navigation based on real-time signal am-
plitude analysis. These innovations collectively establish a new
paradigm for human-machine collaboration, effectively unifying
physical dexterity with digital immersion. By achieving human-
like intuitive interaction through natural gesture recognition and
adaptive object selection, the OOBI framework reveals a potential
blueprint for future natural intuitive interaction. Future devel-
opments will prioritize expanding the gesture lexicon alongside
implementing AI-driven adaptive learning to enable personal-
ized interaction experiences, while concurrently advancing hard-
ware capabilities through electromagnetic direction-sensing in-
terfaces that resolve signal azimuth/elevation angles via EM field
characteristics—collectively establishing spatially aware “face-
to-face” interaction paradigms where directional perception
contextualizes gesture interpretation for human-like intuitive
operation.

4. Experimental Section
Preparation of the OOBI: The OOBI was prepared with a transparent

conductive layer and an insulation substrate. The conductive layer was a
polyvinyl chloride gel (PVC-gel) prepared by mixing PVC and dibutyl adi-
pate (DBA), due to its excellent stretchability and proper resistivity. The in-
sulation substrate was made of styrene ethylene butylene styrene (SEBS).

Preparation of the OOBI—Preparations of the SEBS Substrate: The
SEBS powder (Sigma–Aldrich, CAS: 66060-58-4) wasmixed with n-Hexane
(Aladdin, CAS: 110-54-3). The mixed solution was then stirred for 12 h to
dissolve completely. The solution was then spin-coated on a glass sub-
strate and dried at room temperature.

Preparation of the OOBI—Preparations of the Conductive Layer: The
conductive layer was made of PVC and DBA mixed solution. The mixed
solution was prepared by mixing commercial PVC powder (Scientific Poly-
mer Products Inc., Mw 275 000, CAS: 9003-22-9), with DBA (Macklin, CAS:
105-99-7) as a plasticizer, and dimethylacetamide (DMF) (Macklin, CAS:
624-49-7) as the solvent. The weight fraction of PVC and DBA was decided
according to the weight ratio required in the experiment, respectively. For
example, a weight ratio of 1:3 means 6 and 18 wt.%, respectively. The ob-
tained solution was then spin-coated onto the prepared SEBS substrate,
and dried at 60 °C. After drying, the conductive layer with a SEBS substrate
was then prepared.

Characterization: The voltage data was measured by an oscilloscope
(Siglent SDS 6034 H10 Pro) with a 10 MΩ impedance. The force applied
to the sensor and sensor’s maximum elongation were quantified using
a force gauge (Pubtester, TST-01H). The resistance was tested using a
digital multimeter (Keithley, DMM 7510). The signal generator (Tektronix,
AFG1022X) was adopted to generate sine signals with different frequen-
cies (40–300 kHz). The position of probe during the spatial and tactile
sensing experiments was controlled by a customized three-axis control
platform. The multi-channel data collection was executed through a data
acquisition board which was based on ADC 7606 chip, and the board
would transmit the collected data to the computer through the serial port.
The optical transmittance of the thin film was characterized using a Shi-
madzu UV-3600i Plus UV–vis–NIR spectrophotometer. The FT-IR analysis
was performed by a Thermo Fisher Scientific Nicolet iS20 spectromter.

Robot Arm and Robot Dog Control: The robotic arm was purchased
from Realman Intelligent Technology (RM65). A self-developed MATLAB
program was designed to control the joint movement or posture move-
ment of the robot arm, and then communicate with the robot arm through
Ethernet. Meanwhile, the app can also receive and process the data from
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a data acquisition board, which collects the multichannel voltage outputs
of OOBI.

The robot dog was Bittle, which can be controlled through BLE mod-
ule of MATLAB. A self-developed MATLAB program was written to send
various commands to the robot dog and make it execute different actions.

Simulation: The finite element analysis (FEA) was conducted with
commercial simulation software COMSOL. The details of the simulation
could be found in Figure S11 and Table S2 (Supporting Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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